\(\int \frac {1}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx\) [371]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [C] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 105 \[ \int \frac {1}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\frac {2 \arctan \left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d} \]

[Out]

2*arctan(sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))/d/a^(1/2)-arctan(1/2*sin(d*x+c)*a^(1/2)*s
ec(d*x+c)^(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.29, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {4307, 2856, 2853, 222, 2861, 211} \[ \int \frac {1}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

[In]

Int[1/(Sqrt[a + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]),x]

[Out]

(2*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d)
- (Sqrt[2]*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d
*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2856

Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
d/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[(b*c - a*d)/b, Int[1/(Sqrt[a + b*Sin
[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
 b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 4307

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx \\ & = -\left (\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx\right )+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx}{a} \\ & = -\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a d}+\frac {\left (2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = \frac {2 \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.34 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.65 \[ \int \frac {1}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\frac {i \sqrt {2} e^{-\frac {1}{2} i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \left (-\text {arcsinh}\left (e^{i (c+d x)}\right )+\sqrt {2} \text {arctanh}\left (\frac {-1+e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right )+\text {arctanh}\left (\sqrt {1+e^{2 i (c+d x)}}\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right )}{d \sqrt {a (1+\cos (c+d x))}} \]

[In]

Integrate[1/(Sqrt[a + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]),x]

[Out]

(I*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*(-ArcSinh[E^(I*(c + d
*x))] + Sqrt[2]*ArcTanh[(-1 + E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] + ArcTanh[Sqrt[1 + E^(
(2*I)*(c + d*x))]])*Cos[(c + d*x)/2])/(d*E^((I/2)*(c + d*x))*Sqrt[a*(1 + Cos[c + d*x])])

Maple [A] (verified)

Time = 3.98 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.03

method result size
default \(\frac {\sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {2}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+\arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {2}}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a}\) \(108\)

[In]

int(1/sec(d*x+c)^(1/2)/(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(a*(1+cos(d*x+c)))^(1/2)*(2^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))+arcsin(cot(d*x+c)-c
sc(d*x+c)))/(1+cos(d*x+c))/sec(d*x+c)^(1/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)/a

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.85 \[ \int \frac {1}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\frac {\sqrt {2} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{a d} \]

[In]

integrate(1/sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

(sqrt(2)*sqrt(a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 2*sqrt(a
)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(a*d)

Sympy [F]

\[ \int \frac {1}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate(1/sec(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(a*(cos(c + d*x) + 1))*sqrt(sec(c + d*x))), x)

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.60 (sec) , antiderivative size = 698, normalized size of antiderivative = 6.65 \[ \int \frac {1}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=-\frac {\sqrt {2} \sqrt {a} \arctan \left (\frac {{\left ({\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{4} + 16 \, \cos \left (d x + c\right )^{4} + 16 \, \sin \left (d x + c\right )^{4} + 8 \, {\left (\cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} {\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2} - 64 \, \cos \left (d x + c\right )^{3} + 32 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )^{2} + 96 \, \cos \left (d x + c\right )^{2} - 64 \, \cos \left (d x + c\right ) + 16\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\frac {8 \, {\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2}}, \frac {{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2} + 4 \, \cos \left (d x + c\right )^{2} - 4 \, \sin \left (d x + c\right )^{2} - 8 \, \cos \left (d x + c\right ) + 4}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2}}\right )\right ) + 2 \, \sin \left (d x + c\right )}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}}, \frac {{\left ({\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{4} + 16 \, \cos \left (d x + c\right )^{4} + 16 \, \sin \left (d x + c\right )^{4} + 8 \, {\left (\cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} {\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2} - 64 \, \cos \left (d x + c\right )^{3} + 32 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )^{2} + 96 \, \cos \left (d x + c\right )^{2} - 64 \, \cos \left (d x + c\right ) + 16\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\frac {8 \, {\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2}}, \frac {{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2} + 4 \, \cos \left (d x + c\right )^{2} - 4 \, \sin \left (d x + c\right )^{2} - 8 \, \cos \left (d x + c\right ) + 4}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2}}\right )\right ) + 2 \, \cos \left (d x + c\right ) - 2}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}}\right ) - \sqrt {a} \arctan \left ({\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + \sin \left (d x + c\right ), {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + \cos \left (d x + c\right )\right )}{a d} \]

[In]

integrate(1/sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-(sqrt(2)*sqrt(a)*arctan2(((abs(2*e^(I*d*x + I*c) + 2)^4 + 16*cos(d*x + c)^4 + 16*sin(d*x + c)^4 + 8*(cos(d*x
+ c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(2*e^(I*d*x + I*c) + 2)^2 - 64*cos(d*x + c)^3 + 32*(cos(d*x +
 c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 96*cos(d*x + c)^2 - 64*cos(d*x + c) + 16)^(1/4)*sin(1/2*arctan2(8
*(cos(d*x + c) - 1)*sin(d*x + c)/abs(2*e^(I*d*x + I*c) + 2)^2, (abs(2*e^(I*d*x + I*c) + 2)^2 + 4*cos(d*x + c)^
2 - 4*sin(d*x + c)^2 - 8*cos(d*x + c) + 4)/abs(2*e^(I*d*x + I*c) + 2)^2)) + 2*sin(d*x + c))/abs(2*e^(I*d*x + I
*c) + 2), ((abs(2*e^(I*d*x + I*c) + 2)^4 + 16*cos(d*x + c)^4 + 16*sin(d*x + c)^4 + 8*(cos(d*x + c)^2 - sin(d*x
 + c)^2 - 2*cos(d*x + c) + 1)*abs(2*e^(I*d*x + I*c) + 2)^2 - 64*cos(d*x + c)^3 + 32*(cos(d*x + c)^2 - 2*cos(d*
x + c) + 1)*sin(d*x + c)^2 + 96*cos(d*x + c)^2 - 64*cos(d*x + c) + 16)^(1/4)*cos(1/2*arctan2(8*(cos(d*x + c) -
 1)*sin(d*x + c)/abs(2*e^(I*d*x + I*c) + 2)^2, (abs(2*e^(I*d*x + I*c) + 2)^2 + 4*cos(d*x + c)^2 - 4*sin(d*x +
c)^2 - 8*cos(d*x + c) + 4)/abs(2*e^(I*d*x + I*c) + 2)^2)) + 2*cos(d*x + c) - 2)/abs(2*e^(I*d*x + I*c) + 2)) -
sqrt(a)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2
*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + cos(d*x + c)))/(a*d)

Giac [F]

\[ \int \frac {1}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {1}{\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(1/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^(1/2)),x)

[Out]

int(1/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^(1/2)), x)